Py %
O‘I’ITAN

User Guide of the TITAN Executor for
the Eclipse IDE plug-in

Jen! Balasko, cdam Knapp

Version 8.1.0, 2021-11-10

Table of Contents

1. Introduction
1.1. Overview
1.2. Target Groups
1.3. Typographical Conventions
1.4. Installation
1.5. Reporting Errors
2. Getting Started
2.1. The TITAN Executing Perspective
3. Setting Workbench Preferences and Project Properties
3.1. TITAN Executor Preferences
3.2. TITAN Executor Project Properties
4. Launching the Test Suite
4.1. The Launching Modes Supported by the TITAN Executor Plug-in
4.2. Creating Launch Configuration
5. Executing and Controlling the Execution of Test Suites
5.1. Execution Control
5.2. TITAN Execution Controller View
5.3. TITAN Notifications View
5.4. TITAN Test Results View
5.5. Console Views
5.6. Limitations
6. Other Available Functions
6.1. Formatting Log Files
6.2. Merging Log Files
7. Launching TITAN Java Projects
7.1. The Launching Modes Supported by the TITAN Executor Plug-in for TITAN Java Projects

8. References

© © b N N DO BNMONOMBOR

A W W W W WwWWwWWwWw NN PR
0 00 00 N N N o b WN oo o O

Abstract

This document describes detailed information of using the TITAN Executor for the Eclipse IDE plug-
in.

Copyright

Copyright (c) 2000-2021 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 which accompanies this distribution, and is available at

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html
Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. Overview

This document describes the general workflow and use of the TITAN Executor for the Eclipse IDE
plug-in.

TITAN Executor is a tool to launch testcases with different configuration types, and analyzing their
results.

It is advised to have a basic knowledge and understanding of the Eclipse IDE and its workflows. For
information, open Help > Workbench User Guide in the Eclipse GUI.

1.2. Target Groups

This document is intended for system administrators and users who intend to use the TITAN
Executor plug-in for the Eclipse IDE.

1.3. Typographical Conventions

This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
'+' to represent key combinations. For example, Ctrl+Click

The >' character is used to denote a menu and sub-menu sequence. For example, File > Open .

Monospacedfont is used represent system elements such as command and parameter names,
program names, path names, URLSs, directory names and code examples.

Bold monospacedfont is used for commands that must be entered at the Command Line Interface
(CLI), For example, mctr_gui

1.4. Installation

For details on installing the TITAN Executor for the Eclipse IDE plug-in, see the Installation Guide
for TITAN Designer and TITAN Executor for the Eclipse IDE [2].

1.5. Reporting Errors
The following information should be included into trouble reports:

¥ Short description of the problem.
¥ What seems to have caused it, or how it can be reproduced.

¥ If the problem is graphical in some way (displaying something wrong), screenshots should also

be included.
¥ If the problem generates some output to:
¥ TITAN Console
¥ TITAN Debug Console

¥ If the Error view contains some related information, that should be copied too.

Before reporting a trouble, try to identify if the trouble really belongs to the TITAN Executor for the
Eclipse IDE plug-in. It might be caused by other third party plug-ins, or by Eclipse itself.

Reporting the contents of the Consoles and the Error log is important as TITAN consoles display the
commands executed and their results and the Error log may contain stack traces for some errors.

To identify relevant log entries the easiest way is to search for classes whose name starts with
"org.eclipse.titan".

The location on which the Error Log view can be opened can change with Eclipse versions, but it is
usually found at Window > Show View > OtherE > PDE Runtime > Error Log or Window > Show
View > OtherE > General > Error Log

Chapter 2. Getting Started

2.1. The TITAN Executing Perspective

The execution of TITAN Java projects (the Java side of the Test Executor) is
done as Eclipse native Java applications. It is not yet fully integrated to the
usual interface elements like Views that support the execution of the binaries

WARNING _ . . .
of the C side of the TITAN Test Executor. For information on executing TITAN
Java projects see The Launching Modes Supported by the TITAN Executor Plug-
in for TITAN Java Projects

NOTE In newer Eclipse versions "Launch configuration" is called "Run configuration"”,

however throughout in this document "Launch configuration" is used.

| = TITAN Executing - YFlagTest/src/¥FlagTest.tten - Eclipse Platfor
File Edit Mavigate Search Project Run Window Help

ﬁ - i=h | ! % a @ q v Q"‘ v a3 F Quick Access ﬁ | LD Resource . TITAN Editing @ TITAN Executing

\@ TITAN Execution Controller 53 x % @ TITAN testresults 32 g TITAN notifications B =00

4 . new configuration (YFlagTest) [TITAN Parallel launcher | 43 timestamp i testcase i v
> w1 Main Controller

(i Project Explorer 53 5% ¥ = 08 [YagTetticn 2 [Makefile

[DIAMETERmsg CML113310 1= module YFlagTest {

> . ExtendedComponentTest [-fg -e] 2
+ @ FirstHelloTitan [-f -¢ | 3 type component CT {}
4= function f(out integer i) {
3 mMTAS

5 log("Isbound: ",ishbound(i});
7 Project 1 6 log("i: ",i);
7 Project 2 7}
J projectl 8
10 SCCP PE o= testcase t() runs on CT {
o N 1@ var integer vl _i:=1;
- SCTPasp_CNL113469 11 Fvli);
4 @ YFlagTest [-fg-e] 12 1
4 = bin[excluded as workingdirectory] 13
14 } // end of module
15

= compile

|| Makefile [excluded by convention]
=] ¥FlagTest.cc

|= YFlagTest.d

< [] r 3

Bl Console 51 | J=) Tasks [i Problems @ Error Log

new configuration (YFlagTest) [TITAN Parallel launcher] Main Controller
MC information:
MC state: listening
hoest information:
no HCs are connected
pause function: disabled
console logging: enabled

]

3 Fiﬁm ofggiM |[J:

Figure 1. TITAN Executing perspective

The TITAN Executor plug-in provides its own perspective to Eclipse. This is a layout of visual
elements that provides a good environment for working with TITAN. This layout is a starting point,
since users can create their own layout in Eclipse, to set the best working environment for
themselves.

I Window | Help

Mew Window Quick Ace
Editor L —
Hide Toolbar 0O g TITAN notification
Open Perspective » -. TITAM Editing
1 k
Show View Other...
Customize Perspective... | <
Save Perspective As...

Figure 2. Opening a perspective
Open the TITAN Executing perspective by opening ~ Window > Open Perspective > OtherE

In the pop-up window select TITAN Executing

Fem——

% Y5 Repository Exploring

%5 Debug

GIT Glt
ﬁJJava

@,J.lava Erowsing

'Egl_lava Type Hierarchy

=J=Plug-in Development
E“_—l Resource (default)
EDTeam Synchronizing
@ TITAN Editing
ui'ITI'AN Executing

@ TITAN Log Viewer

Figure 3. Selecting the TITAN Executing perspective
The layout is shown in Figure 1, and contains the following elements:

¥ The upper half of the window shows the views defined by the Executing perspective:

¥ TITAN Execution Controller
This view allows the users to monitor and control the started executions.
¥ TITAN Test results

This view optionally shows the test case verdicts fetched from the notifications and related to
the selected executor in the TITAN Executor monitor view.

¥ TITAN notifications

This view shows all of the notification messages, error messages and console messages, received
from the selected executor in the TITAN Executor monitor view.
¥ Creating launch configurations and executing them is available in the Project Explorer view
¥ In the Editor area the source codes and configurations can be edited.
¥ The lower half of the window shows four views:
¥ Console :

The console shows all related information about build procedure, and execution. Each executor
opens a new console page.

¥ Tasks, Problems and Error Log

This views are not part of the TITAN Executor, however, shows any Executor related
information, for example, errors during a project build.

By default, the Launch Commands are enabled in this perspective, as shown in Figure 4. Only the
Run Configuration s supported by the Executor plug-in. With this tool, new launch configurations
can be created, or existing ones modified.

|35+ G~ @~

Figure 4. Launch Commands

Chapter 3. Setting Workbench Preferences
and Project Properties

3.1. TITAN Executor Preferences

Workbench preferences set user specific general rules, which apply to every project, for example,
preferred font styles, access to version handling systems.

Open Window > Preferences , and select TITAN Executor from the tree.

type filter text TITAN Executor e

General

Ant
AMTLR Editor Path of the log folder. Relative to the working directory. ../log/

Help ["] Delete log files before execution.

Install/Update Merge the log files after test execution,
Java

Set the default log folder, Can be overriden by the logging section of the config file.

Plug-in Development
Run/Debug
Teamn
TITAM Commaon Preferenc
| TITAM Executor |

[» TITAM Log Viewer

[+ TITAM Preferences

= Titanium Preferences

’ Restore Defaulul [Apply

ok || Cancel

Figure 5. TITAN Executing perspective
The following options can be set on the TITAN Executor preferences page:
¥ Set the default log folder.

The tests executed by the TITAN Executor will create the log files in the given folder. This option
is enabled by default. This option is overridden if the "FileName" option is set in the [LOGGING]
section of the runtime configuration file.

¥ Delete log files before execution.

The log files in the default log folder will be deleted before each test execution. Files with Jog
extensions are considered to be log files. This option is only available if the default log folder

has been set, by default it is disabled. If the files cannot be deleted, an error message will be
displayed.

¥ Merge the log files after test execution.

When the test execution is finished, the log files found in the default log directory will be
merged into a single file. This option is available if the default log folder has been set, by default
it is enabled.

3.2. TITAN Executor Project Properties

To open project properties: right click the project and select Properties
On the project property page it is possible to override the workspace settings for the selected

project.
= Properties for SIP . @lﬂlﬁ
type filter text TITAN Executor - - -
Resource
: (") Use workspace settings
Builders i i . g Configure Workspace Settings ...
Checkstyle @ Use project settings

Project References
Refactoring History
Run/Debug Settings
Task Tags [] Delete log files before execution.
TITAN Executor Merge the log files after test execution.
TITAM Log Viewer
TITAM Project Property
AML Syntax

Set the default log folder, Can be overriden by the logging section of the config file,
Path of the log folder, Relative to the working directory, ./log/

[Restore Defaults] [Apply]

® [Ok] [Cancel]

-

Figure 6. Executor property page

Chapter 4. Launching the Test Suite

This chapter describes launch configurations, their options, and launching modes. After building an
executable test suite, it is ready to be launched. In Eclipse, every aspect of the launch can be
configured, for example, different environmental settings can be created by creating different
launch configurations, without modifying the system environment variables, so different test
environments can be created.

This chapter discusses only the launching modes related to TITAN C++ projects, i.e.
the TITAN Single, the TITAN Parallel and the TITAN JNI launching modes. The TITAN

native Java launching mode that is specific to TITAN Java projects is detailed in a

separate chapter, see The Launching Modes Supported by the TITAN Executor Plug-
in for TITAN Java Projects .

NOTE

Please note, that TITAN JNI launching mode is marked as obsolete and will be
removed in later releases.

4.1. The Launching Modes Supported by the TITAN
Executor Plug-in

The TITAN Executor can operate in single or parallel mode.

¥ The single mode - that is also called non-parallel mode - is thought for TTCND3 test suites built
around a single test component. It is forbidden to create parallel test components in single
mode, thus the test suite is not supposed to contain any create operation; otherwise the test
execution will fail.

¥ The parallel mode offers full-featured test execution including distributed and parallel
execution. The goal of introducing the single operating mode was to eliminate redundancies
concerning parallelism, and thereby increase the speed of execution.

It is possible to execute non-parallel test suites in parallel mode, but doing so results in unnecessary
overhead. The C++ code generated by the compiler is suitable for both execution modes, there are
no command line switches to select mode. The only difference is that another Base Library has to
be linked in single and another in parallel mode.

The TITAN Executor plug-in is built on the TITAN Executor and provides support for the following
launch and execution modes. These are only available for TITAN C++ projects:

¥ Single mode:

This mode executes the built executable, and parses its output for information that can be
displayed. There is no limitation on the amount of simultaneously running executions of this
kind.

¥ Parallel mode:

This mode executes the mctr_cli program, and continuously parses its output for information

that can be displayed. Although some functions can be reached from the graphical user
interface, the main advantage of this launch mode is that it can be driven from its console
window, just as mctr_cli could be driven from the command line. The user interface reacts to
console outputs by the mctr_cli . However, as the user is able to change every aspect of the test
execution system from outside the execution monitor view, an always consistent controlling
environment cannot be provided. There is no limitation on the amount of simultaneously
running executions of this kind.

¥ JNI mode (obsolete): This mode executes the main controller through the JNI interface, and
continuously parses its output for information that can be displayed. The functions can be
reached from the graphical user interface. The user interface reacts to the state changes of the
main controller through a pipe. There is no limitation on the amount of simultaneously running
executions of this kind.

NOTE Execution in JNI mode is not supported on Windows.

¥ Only one parallel execution can be run at a time.

¥ The plug-in does not provide any means for the user to execute shell commands in the shell
where the execution is happening.

¥ As the plug-in is directly interfacing with the C/C++ code in the main controller, it is dependent

on the version and the platform of main controller.

Note that some execution modes require a properly set up runtime configuration file.

4.2. Creating Launch Configuration

Launch configurations can be created, modified and deleted in the Create, manage, and run
configuration dialog window. It can be opened in the numerous ways.

4.2.1. Run asE

Right click on a project in the Project explorer and select Run configurations E from the Run as
option.

o

) tc HelloW2() runs on MTCType sy
Teggle ANTLR project nature

Run As | g 1 TITAN INI launcher

Debug As 2 ;ﬁ" 2 TITAM Parallel launcher
3

Team Run Configuraticns...

Compare With L

(PCO_PT.receive(Hello, TTCH-3!
Restore from Local History... . T.timecut { setverdict(inconc)
(PCO_PT.receive { TL T.stop; set

Configure 2
Titan 3
Properties Alt+Enter

Figure 7. Executing from the Project Explorer

10

4.2.2. Running from the Launch Command Toolbar

In the toolbar, click the down arrow at the Launch Commands , and select Run as.
If not visible, modify the Launch properties in the Windows > Customize Perspective

¥-r0-Q- & -

= f 1 really executable (1)

:ﬁ} 2 new configuration (Hello_world)

:ﬁ.") 3 new configuration (b)

Run As ¥

Run Configurations...

Organize Favorites..,

Figure 8. Executing from the Launch Commands toolbar set

£ s .

— &1 B Configure launch settings from this dialog:

type filter text - Press the 'Mew’ button to creat...nfiguration of the selected type.
Java Applet i - Press the 'Duplicate’ button to copy the selected configuration,
Java Application
Ju IUnit ~ B - Press the 'Delete’ button to remove the selected configuration.
j%:'- JUnit Plug-in Test 3——:'& - Press the 'Filter' button to configure filtering options.
[#= Launch Group
&% 05Gi Framework E - Edit or view an existing configuration by selecting it.
E: Test
ﬁ: TITAN NI (% New nfigure launch perspective settings from the Perspectives

a g TITAN Para : ference page.

3¥) hew co Duplicate
1 [m K Delete

Figure 9. Launch configuration options
The following operations are available:

¥ ®lew O:

This button can be used to create a new launch configuration. The values of the created launch
configurations will be set to their defaults.

¥ @uplicate O:

This button will create a new launch configuration, filled with the values of the source launch

configuration. This button should be used if the new launch configuration does not differ too
much from an earlier one.

¥ Melete O:

This button deletes the actually selected launch configuration.

All launch configuration types supported by the Executor plug-in can be found in the panel.

11

—*l
= &

G
L1 o
1y

vpe filter text

Java Applet -
Java Application
Ju JUnit —
Ju JUnit Plug-in Test
= Launch Group
& 05Gi Framework
Ei Test
- TITAN JNI launcher
P ;ﬁ.") TITAM Parallel launcher
:'j') new cenfiguration (Hello_world)
i TITAM Single Mode launcher

Filter matched 13 of 13 items

m

1

Figure 10. Launch configuration types

Other launch configuration types supported by other plug-ins are also available here.

4.2.3. Creating a Launch Configuration Using Launch Shortcuts

It is possible to create the very first launch configuration for a project, or configuration file in a
much easier way then described before:

¥ Right click on a project in the Project explorer > Run As

¥ Right click on a .cfg file in the Project explorer > Run As
Both will bring up the launch shortcuts available for the selected project.

In the first case the launch configuration will not have any configuration file set by default, if there
isnOt any configuration file. It will set the only configuration file if there is exactly one configuration
file. It will open a list of configuration files belonging to the project if there are more such files.

In the second case the selected .cfg file will be set as the configuration file to use.

Run As » i 1 TITAN Single Mode launcher
2

Debug As Run Configuraticns...

Drnfila e 1

Figure 11. The single Mode execution launch shortcut being active on a project

When this function is invoked on a resource to which no launch configuration has ever been
created:

1. A new launch configuration is made.

2. The project, working directory, executable and configuration file paths are initialized.

3. If the executable is found, the available testcase will be extracted.

4. In case of JNI and Parallel mode execution a single default Host Controller is also initialized.

5

. Finally the newly created launch configuration is launched automatically.

12

When this function is invoked on a resource to which there has been already created exactly one
launch configuration, that launch configuration will be launched automatically.

When this function is invoked on a resource to which several launch configurations have been
made, a list will be displayed for the user to select the one to launch, or cancel to create a new one.

Please note, that after the creation of these launch configuration it is possible to fine tune them just
like any other launch configuration using the Launch Configuration Dialog.

4.2.4. Basic Main Controller Options Page of the Launch Configuration
S fun Conguratior x

Create, manage, and run configurations @

.l Basic Main Controller op pil HostControIIerTab] :3 Testsetq € Basic performance settin] E Environmenq = Common\l

—+,
P IEE R

IE,
i

Mame: Mew_configuration (HelloWorld)

2 Eclipse Application Project:

Java Applet

Java Application HelloWorld Browse Workspace..
JUnit

? JU::tPIu Zin Test Working directory (REQUIRED:

’31; 0SGi Frargnework working directory: bin

- TITAN NI launcher
a :8’ TITAN Parallel launcher
:3’ new configuration (YFlagTest
% New_configuration (HelloWo Executable (OPTIONAL):
i TITAN Single Mode launcher Executable {(OPTIOMNAL): bin/HelloWorld.exe

Resolved location: file:/C:/Users/ethbaat/runtime-First-EclipseOrgApplication/HelloWor

path variable] ’envvariable] [browse]

Resolved location: file:/C:/Users/ethbaat/runtime-First-EclipseOrgApplication/HelloWor

path \.rariable] [env\.rariable] [browse]

Configuration file (OPTIOMAL):
Configuration file (OPTIONAL): .\HelloWorld\sra\MyExample.cfg

Resolved location: file:/C:/Users/ethbaat/runtime-First-EclipseOrgApplication/HelloWor - -
path varlable] ’envvarlable] [browse]

Execute automatically

4 1 3

. . Apply Revert
Filter matched 11 of 11 items =

® [Run] ’ Close

Figure 12. Basic Main Controller options page
On this page it is possible to set:

¥ The name of the project.

Filling this field is mandatory. The entered name is checked for validity. The projectOs root folder

is used during the automatically filling of the other fields. The path variables are relative to the
projectOs root supporting the portability of the project as whole. If you enter the name of a valid
project with TITAN nature (or select one by browsing, as can be seen below), having the needed

build options set, then the fields of the working directory, the executable and the configuration
file will be filled in automatically.

It is encouraged to use the Browse Workspace button to select a valid project from

NOTE the workspace that simplifies the filling of the other fields, as well as reduces the
possible mistakes.

13

o Project selection o o e S|

Select a project to constrain your search.

' ExtendedComponentTest
@ HelloWarld
@ YFlagTest

Figure 13. Selecting a project
¥ The working directory of the project.

In single mode the built executable and in Mctr_cli mode the Main Controller is executed from
this directory. The entered directory path is checked for validity.

¥ The executable of the project.

Please note that this executable is used to fill in the list of testcases on the Testsets page, if you
change the path, it will be re-checked, and the data for the Testsets page will be re-evaluated.
The entered file path is checked for validity.

¥ The path of the configuration file.

Please note that not only the existence but also the validity of the configuration file is evaluated
here. If a problem was found while trying to process the configuration file, the launch process
will be interrupted here. Please note that this evaluation is done every time this configuration
page becomes active, meaning that switching to and from this page can take some time. The
entered file path is checked for validity.

¥ Execute automatically

Whether the user wish to start executing the configuration file automatically when the launcher
is started. Please note that this option is turned on by default.

All fields can be filled in either by entering the proper values, or via browsing for them.

14

4.2.5. Host Controllers Page of the Launch Configuration

Mame: Mew_configuration (HelloWorld)

-,

i I
@ Basic Main Controller (p‘j HostControllerTab :3 Testsetq i Basic performance set] E Environmenq =] Common}

Haost Controllers to use:

w1 Host = Working directory |ms Executable ... Command

localhost bin bin/HelloWorl... cd %Working.. Edit...

Copy...

Remove...

Init...

=

Figure 14. Host Controllers
On this page the Host Controllers can be managed.

When activated in the executors, these Host Controllers will be started and parameterized to
connect to the Main Controller automatically. Please note that other host controllers might also
connect to Main Controller, but those must be manually parameterized.

There are four operations available on this page:
¥ NewkE :
With this button a new Host Controller can be created.
¥ EditE :
With this button the settings of an existing Host Controller can be changed.
¥ CopyE :
With this button a copy of an existing Host Controller can be created.
¥ RemoveE :
With this button an existing Host Controller can be removed.
¥ InitE

Pressing this button will remove the existing host controllers and try to automatically create
one based on the settings of the project (provided on the Main Controller page, for more
information please refer to section 4.2.4)

The first two of these options opens up the Host Controller dialog (below).

15

F e ——— TH
= Host Controller
L e e——

g hestname: localhost

working directory: bin

Resolved location: file:/ T/ Users/etl

’ path 1.r'arialulva] [ENV 1.r'arialulva] [bruwse]

executable: bin/HelloWorld, exe

Resolved location: file:/C:/Users/etl
’path variable] [erw variable] [brﬂwse]

L
—T

.. command: cd ¥Workingdirectory; %:Executable %MCHost %MCPort

example command: ed Ch\Users\ethbaat\runtime-First-EclipseCrghpplication\H

[Ok] ’ Cancel

P A

Figure 15. Host Controller dialog
On this Dialog the following options can be set:

¥ the name of the host
¥ the working directory of the host
¥ the executable on the host

¥ the command to execute when starting a given Host Controller
Please note that:

¥ none of the fields is required to be unique
¥ only the command to execute is required for successful operation

¥ the name, working directory and executable fields are only presented to ease the creation of
Host Controllers, especially copying them. In this case it is possible to use the exact same
parameterized command for several Host Controllers

You can enter special OmacrosO into the command, which will be extracted just before executing the
command.

¥ %Hosis replaced by the contents of the name field of the host

¥ %Workingdirectory is replaced by the contents of the Working directory field

¥ %Executableis replaced by the contents of the Executable field

¥ %MCHo# replaced by the address where the Main Controller is running

¥ %MCPolris replaced by the port on which the Main Controller is accepting connections from the

Host Controllers

Please note that the values for the last two macros are provided by the Main Controller.

The meaning of the default command string:

16

¥ rsh %Host : means that before starting the Host Controller it is required to login to a remote

machine.

¥ cd %Workingdirectory; : means that the Host Controller will be started from a specific working

directory, and all log files will generated in this directory.

¥ ./%Executable % MCHost %MCPartmeans that the Host Controller is to be executed with the 2
parameters describing how to connect to the Main Controller.

The ./, executing on this way is only required if the location of the Host

NOTE Controller is provided without a full path. In case a full path is used, this part

must be removed.

Please also note that in Single launch mode this page does not exist, as in single mode Host

Controllers cannot be used.

4.2.6. Testsets page of the launch configuration

' Basic Main Controller (p'.j HostControllerTab :3 Testsets . Basic performance set\l E Environmenq =) Commorq
test sets:

testcases:

@ MyExample.control
@ MyExample.tc_HelloW
@ MyExample.tc_HelloW2

Right click to add or remove testsets,

As extracted from the executable,
Use dragdrop to add, remove or reorder testcases,

Refreshed when the Executable on the MainController page changes.

Figure 16. Testsets page
On this page testsets can be set and managed.
The page consists of two areas:

¥ On the left side is the testcases panel.

The available testcases and control parts are listed here. They are collected from the executable

provided on the Basic Main Controller page
¥ On the right side is the testsets panel.

The already created testsets and their contents are displayed here.

To reach the basic test set operation right click on the testset panel.

Operations on the testsets panel:

17

create new testset

rename testset

remowve

Figure 17. Basic testset operations

¥ Create new testset

By clicking on this action a new testset can be created. Please note that the names of testsets
must be unique.

¥ Rename testset :

By clicking on this action while a testset is selected, it can be renamed. Please note that the
names of testsets must be unique.

¥ Remove (testset):
By clicking on this action while a testset is selected, it can be removed.
¥ Remove (testcase):

By clicking on this action while a testcase is selected from a testset, it can be removed from the
testset.

Addition, reorganization and copying of testcases is supported via drag & drop operations.

test sets:

= :g test_setl

@ TcharOper.charConst
TcharOper.charAssign

TcharOper.charConst

TcharOper.charCompEg

TcharOper.charCompEg

@
@ TcharOper.charCompEqg
@

TcharOper.charComph @ TcharOper.charAssign

@ TcharOper.charConst

@ TcharOper.charCompEq

—FFL T =T T |

Figure 18. Drag & Drop on the testsets page
¥ Inserting new testcases in a testset:

To insert a set of testcases into a testset, they should be grabbed from the testcases panel and
dropped on the desired testset.Please note that they can be dropped right to their intended
positions if the testset is in extracted state. If the testset is in closed state, it can be opened
without disrupting the drag & drop operation by holding the mouse over the testset.

¥ Moving testcases:

18

To move a set of testcases into another position select them, and use drag & drop to move them
to the desired place.

¥ Copying testcases:

Copying testcases is almost the same as moving testcase, with the only difference being that the
copy type of drag & drop must be used.Please note that on most platforms this behavior can be
activated by holding down the Control button on the keyboard while the drag & drop
operation is ongoing.

It might happen that the executable was changed since the testsets were last
modified, in a way that some testcases contained in testsets were removed. In this

NOTE case the structure of the testsets is not adapted automatically; rather it displays
warning signs before the missing testcases and the testsets containing such
testcases, as it can be seen below .

testcases: test sets:
@ TcharOper.charAssign = fbtest_setl
@ TcharOper.charConst @ TcharOper.charfssign
@ TcharOper.charCompEqg @ TcharOper.charConst

@ TcharOper.charConst

@ TcharOper.charCompEqg

@ TcharOper.charCompEqg

@ TcharOper.charCompEqg
{chhaerer.charCumpNotEq

Figure 19. Erroneous test set

Please note that all three launch configuration types supported by the Executor plug-in use this
page the exact same way (however they might use the created test sets differently).

4.2.7. Basic Performance Settings Page of the Launch Configuration

On this page performance affecting options can be set. Please note that there are only two general
settings available, all other settings are launch mode specific, as it can be seen on figures Figure 20,
Figure 21 and Figure 23.

¥ General performance options:

= . . . e ' . .
g Basic Main Controller options | 4 o Testsets Basic performance settings

-

Limit the amount of notifications in the Motifications view to: 1000

Enable verdict extaction from messages
Refresh the list of testcases on launch

Figure 20. General part of the performance page

¥ Limiting the amount of notifications:

19

With this option the maximum amount of notification messages, which can be kept available in
the notification view can be set. Basically it can be used in two ways:

¥ Setting it to O:

This means, that every notification message (console logs and error messages) will be kept
available. Please note that in a lengthy execution, the amount of used memory might become
very high. Please also note that the views refreshing speed might depend on the amount of
elements, which need to be redrawn.

¥ Setting it to a positive number:

This means that the maximum amount of notification messages that are accessible will be
around this amount. Please note that if older messages are not needed this is a good way to
decrease memory requirements, and possibly increase execution speed. Please also note that
the real amount of accessible notifications might somewhat exceed this threshold. This is
because of performance reasons, as removing several elements at once is much faster than
removing elements one by one.

¥ Verdict extraction from notification messages:

If this option is set, then the notification messages are parsed for possible verdict setting
messages. This allows using the TITAN test results view, where only such verdict setting
information is displayed. However, please note, that this requires a regular expression
matching for every message, which can slow down the execution.

¥ Refresh the list testcases on launch:

If this option is set right after the launch of a launch configuration (but still before actually
executing something) if the binary is set, it will be contacted for the actual list of testcases and
control parts. The elements from this list which are not included in the configuration (because
they were added later) will also be displayed in the execution dialog.Please note that this will
not update the configuration itself, as that could lead to data loss regarding testsets (containing
the testcase temporarily removed).

¥ Specific performance options for Single launch mode (below):

. Basic Main Controller options [:3 Testsets [’ Basic performance settings [/ -} Environment] E

-

Limit the amount of notifications in the Motifications view to; m =

Enable verdict extaction from messages
Refresh the list of testcazes on launch

Keep the temporary configuration files in single mode execution

Figure 21. Performance page of the Single launch mode
¥ Keeping temporary configuration files:

In single launch mode the execution is controlled with temporarily created configuration files.
For example, if a testset is to be executed, the executable will be called with a configuration file

20

containing a properly generated Execute section.
¥ If this option is not set, then temporary configuration files are deleted after each execution, to
save disk space.

¥ If this option is set, then the temporary configuration files are kept after execution. This can be
used to create specific configuration files automatically.

¥ Specific performance options for parallel launch mode(below):

@ Basic Main Controlle | HostControllerTab EE Testsets | £ Basic performance se E Environment |

Lirnit the amount of notifications in the Motifications view to: m =

Enable verdict extaction from messages
Refresh the list of testcases on launch

State information shall be automatically refreshed in seconds: 3

Figure 22. Performance page of the mctr_cli launch mode

¥ State information refresh:

In parallel mode the execution is controlled with command line messages and outputs. This
means that the eclipse side of the executor and the command line side of the executor has a
high probability of being in different states. This option set how often should synchronization
be done.

Please note that values are only accepted in the 1..10 range. Lower values could provide too
much load, higher values would could effect execution times.

¥ Specific performance options for JNI launch mode (below):

E.:b Basic Main Controller optic = HostControllerTab 23 Testsets | Basic performance settings

-

Limit the amount of notifications in the Motifications view to: 1000

Enable verdict extaction from messages
Refresh the list of testcazes on launch
Enable logging to the console

Enable severity level extraction

Figure 23. Performance page of the JNI launch mode
¥ Enable logging to the console:

If this option is not set, the notification messages will not be printed to the console (but they will
still be displayed in the notification view).

¥ Enable Severity level extraction:

The extraction of the severity level of events does not really cost too much performance, so it
should always be set unless performance is crucial, and this information is not really needed.

21

4.2.8. The Environment Page of the Launch Configuration

r-p.'.j HostControllerTab |59 Testsets (’ Basic performance se (ﬁ Environment . Tz A

Environment variables to set;

Yariable Value Mew...
& pATH Slenv vanPATH]

® TTCN3_DIR Shome/ekrisza/TITAN
& TTCM3_LICEMSE_FILE fhome/eknsza/license.dat Edit...

Remowve

@ Append environment te native environment

() Replace native environment with specified environment

Figure 24. Environment settings page

In general, the environment settings page is the place where the execution environment should be

configured.
On this page you can:

¥ Add new variables with the " NewE " button.

¥ Add environmental variables from the actual environment with the " SelectE " button.
¥ Modify already set variables with the " EditE " button.

¥ Delete already set variables with the " RemoveE " button.

On the bottom of the page there is one more important option: whether you want to append or
overwrite the list of variables coming from the operating system, with these variables.

Important:

¥ Please donOt forget that the TITAN executor requires the setting of some environmental
variables, to work properly. For more information please refer to the ProgrammerQs Technical

Reference [4].

¥ Please note that the execution is not taking place in the operating systemOs environment, but in
the Java Virtual MachineOs environment. Special caution is required, if your tests depend on the
values of environmental variables defined in the operating system.

¥ In order to make dynamic linking work, the LD_LIBRARY_PAEHRvironment variable is set
automatically for all launch modes. It generally means, that ${TTCN3_DIR}/Iib and the working
directories of all reachable projects are appended to LD _LIBRARY_PATHhe user defined
LD_LIBRARY_PAdiWays comes first, if itOs available.)

Please note that this page is fully provided by Eclipse, however features like appending the
environmental variables or using variable variables (this feature can be reached by pressing the
EditE button), only take affect if they are implemented in the plug-in, too. Appending or
overwriting environmental variables is fully supported. Some effort was made to support the
variables too, but as their number, and ways of behaving is internal to Eclipse (meaning that it can

22

be changed at any time), their usage is NOT RECOMMENDED.
Differences of the launch modes:
¥ In single mode:
The shell created to run the built executable will receive the environmental variables.
¥ In parallel mode:

Both the Main Controller and the Host Controllers will be executed in shells, having the
provided environmental variables set.

¥ In NI mode:
The Host Controllers will be executed in shells, having the provided environmental variables

set.

4.2.9. Common Page of the Launch Configuration

fg,"j HostControllerTab |59 Testsets (’ Basic performance se (ﬁ Environment (Ifl Common - 1 A
Save as
@ Local file
() Shared file: YHello_world Browse...
Display in favorites menu Console Encoding
F ﬂ Run @ Default - inherited (Cpl250)

© Other |1S0-8859-1

Standard Input and Output
Allocate Conscle (necessary for input)

[File:
Workspace... File System... Variables...

Append

Launch in background

Figure 25. Common page

This is a fully Eclipse provided and supported page.

For us the two most important parts of this page are:
¥ The Save as region:

Here you can select a directory where the data of the launch configuration will be saved. The
file will be named after the name of the launch configuration, with the extension "launch".
Eclipse is automatically taking care of such files, if it finds such a file anywhere in the
directories of the projects, it will be offered to the user.

23

NOTE

Please note that for this reason it is advised to put the launch configurations in the
projectOs directories.

Please note that if you choose not to save the launch configuration it will still be
saved, but to an internal point in EclipseOs inner data hierarchies.

Please note if a project is closed, the launch configurations belonging to it wonOt be
displayed.

¥ Standard input and output:

24

Allocate Console

This option should always be checked; otherwise Eclipse will not create a console for the
executed processes, disabling communication with them.

File :

If a file is set, then every command entered in, or output on the console will be written to
the given file, too.

Append :

If this option is not set, then every time a new process is started it will erase the contents of
the above mentioned file, before writing out the new messages.

In IJNI mode launch the Standard input and output handling part is not
supported.

NOTE

Chapter 5. Executing and Controlling the
Execution of Test Suites

The three different launch modes related to TITAN C++ projects that are supported by the Executor
plug-in, also imply three different execution mechanisms (executions and executors).

As the general user interaction interfaces, are about the same, we will discuss them one by one,
detailing the differences between the execution modes when they apply.

5.1. Execution Control

Execution can be started on several ways:

¥ Pressing the Run button on a launch configuration, starts an execution configured with that
launch configuration.

¥ Pressing the Run button on the launch commands actionset, on the toolbar, will start an
execution configured with the launch configuration used the last time.

¥ Pressing the arrow to the right from the Run button on the launch configuration actionset, and
selecting the preferred launch configuration, will start an execution configured with the
selected launch configuration.

The launching modes are explained in detail in the chapter describing launching modes supported
by the TITAN Executor plug-in

Please note that redrawing the supported views might cost some performance, for this reason it is
supported to close these views. If these views are closed then the performance penalty of redrawing
them does not apply, however in that state you cannot control the execution of the tests, and you
don®t receive any status information. If in the middle of the execution the views are opened up
again, they will show the actual state of the system, and you can again take control of the execution.
Please note that only the views can be closed; exiting Eclipse stops every ongoing execution
automatically.

As soon as an execution is started it will be displayed in the Executor monitor view.

5.2. TITAN Execution Controller View

25

.'.TlTAN Execution Controller 3 = T = O

4 ' Mew_configuration (HelloWerld) [TITAM Parallel launcher]
4 b Main Controller
@ Stater executing control part
@ pause function: disabled
@ conscle logging: enabled
o Host Controller

Figure 26. TITAN Execution Controller view

The TITAN Execution Controller view is the place where you can control the execution via their
executors.

It is made up of two main parts:
¥ The toolbar:
This is the place where general execution mode independent actions are made available.
¥ The main window:

This is the place where executor specific information and actions are made available.

Four actions are available from the toolbar:
¥ Remove selected terminated launch
This action can remove an already terminated launch from the list.

¥ Remove all terminated launches
This action removes every terminated launch from the list.

¥ Terminate selected launch
This action can terminate a not yet terminated launch.

¥ Terminate all launches
This action can terminate every not yet terminated launch.

These actions are only enabled if they can be applied.

Please note that it is a good idea to look around inthe ~ Window > Preferences > Run/Debug section,
as several Eclipse level preferences can be set here, that might affect the user experience.

For example:

¥ In Console the preferences of the launch consoles can be set.

¥ In Launching you can choose to have a build before every launch (the build actually only
happens if it is required).

The main window contains information about the launches and executors.

26

This representation has:
¥ A general part:
This is a tree, where the root represents the launch, and the leaf represents the executor.

¥ The name of the root follows the <name of the launch configuration> [<launch mode>]
convention.
The root always offers all four actions known from the toolbar (they can be reached by a right
click on the root element)

¥ The name of the leaf is always Main Controller.
The leaf allows the terminate selected launch and the remove terminated launch actions.
" A specific part:

The actions generally provided by the leaf are extended with executor specific ones. In case
of the parallel and JNI launch modes, detailed information about the Main Controller can be
made visible as a sub tree of this tree node.

Specific commands:

¥ in Single mode:

start execution

#£ Remove selected terminated launch

Terminate selected

Figure 27. Commands in single mode
¥ Start execution:

This action lets you execute your test campaign, via the Execute dialog (Figure 31). Please note
that temporary configuration files, based on the selection in the Execute dialog, are generated to
drive the execution.

¥ in parallel mode:

autamatic execution

skart Host Controllers
create MTC

start execution
Eerrninate the MNC
exik

update information

; Femove selected terminated launch

Terminate selected

Figure 28. Commands in parallel mode

27

¥ Automatic execution

This action allows you to automatically execute tests. You will be presented with the Execute
dialog (Figure 31). After selecting the element you wish to execute, if the launch was configured
properly, it will automatically navigate through the steps that are required for the execution.

¥ Start Host Controllers

This action starts the Host Controllers set on the Host Controllers page of the launch
configuration. Please note that the variables inserted into the Host Controllers commands are
extracted at this point. For more information on the Host Controllers page of the launch
configuration, please referto Host Controllers Page of the Launch Configuration — ;

¥ Create MTC :
This action executes the " cmtc " command, creating the Main Test Component of this execution;
¥ start execution

This action brings up the Execute dialog (Figure 31), and executes the " smtc" command
properly parameterized, with the selected item to execute;

¥ Terminate MTC

This action executes the " emtc " command, terminating the Main Test Component;
¥ exit :

This action executes the " exit " command, exiting from the Main Controller;
¥ info :

This action executes the " info " command, providing inner state information to the user.

NOTE The last five commands are commands of the ~ Mctr_cli .

All of the commands of Mctr_cli can be issued directly from the Console too (including the ones
mentioned). The executor will try to adapt to the changes, for example if you select the info action,
or execute the info command in the Console, the information displayed under the executor node

will be updated (this can be seen on Figure 29). For more information on the commands of the
Mctr_cli and how to execute testcases in it please refer to Section 4.4 of the User Guide [3].

28

- ;" Main Controller

@ State: ready
= | Host Cantroller
@ IP address: ipw08.eth.ericsson.se
@ IP number: 159.107.199.252
@ Local host name: toelinus
@ operating systern: Linux 2.6.8-24 24-smp on 686
@ HC state: ready

Figure 29. Example information display in the Parallel launch mode

¥ JNI mode:

automatic execution

Start session

Set parameters

Start HCs

create MTC

Execute..

Fause execution

Continue execution

Stop execution

Exit MTC

Shutdown session
« Generate console log

Update status information

| # Remove selected terminated launch

] Terminate selected

Figure 30. Commands in JNI mode
¥ Automatic execution

This action allows you to automatically execute tests. You will be presented with the Execute
dialog (Figure 31). After selecting the element you wish to execute, if the launch was configured
properly, it will automatically navigate through the steps that are required for the execution.

If you wish to do these steps yourself, then you can use the following actions.

¥ Start session

The Main Controller starts listening for incoming Host Controller connections on the TCP port
defined in the configuration file.

¥ Set parameters

The Main Controller downloads the configuration file to the connected Host Controllers, so they
can process it.

¥ Start HCs :

The Host Controllers, defined on the Host Controller page of the launch configuration, are
started. They first try to establish a TCP connection to the Main Controller and then wait for
further requests. If a Host Controller connects to the test system after the parameters were
already set, the Main Controller will download the configuration file to this new Host Controller,
too.

¥ Create MTC :

Creates the Main Test Component and establishes a control connection between the Main
Controller and the Main Test Component.
Please note that there can be only one MTC in the test system.

¥ ExecuteE :

Brings up the Execute dialog (Figure 31), where control parts, testcases, test sets and even

execution schemes created in the configuration file can be executed.
¥ Pause execution

Sets whether to interrupt test execution after each test case, or not. The actual value is displayed
as the checked status of this action (if it is set, then a checked state is displayed). If this action is

checked and the actual testcase is finished, the execution is stopped until the Continue

execution action is selected. If this action is not checked and the actual test case finished
execution, then the execution continues with the next test case.

¥ Continue execution
Resumes the interrupted test execution.
¥ Stop execution

Terminates the test execution.
The verdict of the actual test case will not be considered in the statistics of the test suite.

¥ Exit MTC
Terminates the Main Test Component.
¥ Shutdown session

Shuts down the session, terminating the Host Controllers and the Main Controller.
Please note that the already connected Host Controllers cannot be terminated till this point in
the execution.

¥ Generate console log

Enables / disables console logging.

If this action is not checked, console messages will not be generated.

Please note that in this case the notification messages (originally also considered as console
messages), will not be emitted by the Main Controller, this way such messages will be missing
from the Notification view too.

30

¥ Update status information

Selecting this action you can update the detailed information, which the main controller
provides (an example can be seen on Figure 29).

5.2.1. Execute Dialog

 oxecute ———RITE]

:g control parts

i :gtest sets

test setl

=e
[+ aotestcases

0@ configuration file

2| times

-

Run selected: 4

Controls how many times the selecte

(0] 4 Cancel

Figure 31. Execute dialog enabled
This dialog (above) is shown by all 3 launch modes when you select to execute tests of any kind.
This dialog represents the executable test elements in a tree:

¥ Control parts.
¥ Test sets.
¥ Testcases.
¥ Configuration file:
This means the tests and their order defined in the execute section of the configuration file,

provided on the Basic Main Controller options page of the launch configuration (for more
information please refer here).

On this dialog you can also select how many times you wish to execute the selected element.

Selecting the amount of execution times is only available if an executable element is selected. If one
of the main elements (branches) of the tree is selected, then the execution amount adjusting part of
this dialog becomes disabled (this can be seen below).

31

& Execute =T

:g cantrol parts

@ test_setl
B T testcases

B2 configuration file

Run selected: 1 E times

O Cancel |

Figure 32. Execute dialog with disabled execution times part

Please note that if an element type is not present then the corresponding branch cannot be
expanded. For example if no configuration file was set on the Basic Main Controller options page,
then the configuration file branch does not have leafs.

5.3. TITAN Notifications View

Figure 33. TITAN Notifications view

The TITAN Noatifications view (above) contains all of the natifications (previously console and error
messages), that might come from the test system.

As several executions can be ongoing at any given time, this view always shows the notification
messages, created by the execution/launch actually selected in the TITAN Execution Controller view
(Figure 26). For this reason the tool tip of this view shows which execution it belongs to at a given
time.

Notifications of an execution can only be reached; as long as the execution is not removed from the
system (being terminated is allowed).

Please note that the Performance page of the launch configuration has some options to tweak the
performance of this view. For more information please refer to Host Controllers Page of the Launch
Configuration

The following actions are supported:

32

